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The hypersonic flow around smooth blunted bodies in the presence of intensive 
injection from the surface of these is considered. Using the method of external 

and internal expansions the asymptotics of the Navier-Stokes equarions is con- 

structed for high Reynolds numbers determined by parameters of the oncoming 
stream and of the injected gas. The flow in the shock layer falls into three char- 
acteristic regions. In regions adjacent to the body surface and the shock wave 

the effects associated with molecular transport are i~ignifi~nt, while in the in- 
termediate region they predominate. ln the derivation of solution in the first 

two regions the surface of contact discontin~ty is substituted for the region of 

molecular transport (external problem), An analytic solution of the external 
problem is obtained for small values of parameters E, = p, i PS” and 6 Z-T= 

^I 
i’ u: 2L,u.* I p, 1 2 I’m in the form of corresponding series expansions in these para- 

meters. Asymptotic formulas are presented for velocity profiles, temperatures, 
and constituent concentration across the shock layer and, also, the shape of the 
contact discontinuity and of shock wave separation. The derived solution is com- 

pared with numerical solutions obtained by other authors. The flow in the region 
of molecular transport is defined by equations of the boundary layer with asymp- 

totic conditions at plus and minus infinity, determined by the external solution 

(internal problems, A numerical solution of the internal problem is obtained 

taking into consideration multi~m~nent diffusion and heat exchange, The 
problem of multicomponent gas flow in the shock layer close to the stagnation 

line was previously considered in [l] with the use of simplified Naviergtokes 
equations. 

The supersonic flow of a homogeneous inviscid and non-heat-conducting gas 
around blunted bodies in the presence of subsonic injection was considered in 

[2 - 71 using Euler’s equations, An analytic solution, based on the classic solu- 
tion obtained by Hill for a spherical vortex, was derived in [2] for a sphere on 

the assumption of constant but different densities in the layers between the shock 
wave and the contact discontinuity and between the latter and the body. Certain 
results of a nurner~~~ solution of the problem of.intensive injection at the SUI- 

face of ax&symmetric bodies of various forms, obtained by Godunov’s method 
[3], are presented, Telenin’s method was used in [4f for numerical investigation 
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of flow around a sphere ; the problem was solved in two formulations: in the 

first, flow parameters were determined for the whole of the shock layer, while 
in the second this was done for the sutface of contact discontinuity, which was 

not known prior to the solution of the problem, with the pressure specified by 
Newton’s formula and flow parameters determined only in the layer of injected 

gases. The flow with injection over blunted cones was numerically investigated 

in [5] by the approximate method proposed by Maslen. The flow in the shock 

layer in the neighborhood of the stagnation line was considered in [6, 81, and 
intensive injection was investigated by methods of the boundary layer theory in 

I? - 121. 

1. Investigation of the disintegration of a number of heat-insulating materials [ 11 
had shown that bodies flying in the atmosphere of the Earth and other planets are sub- 

jected to a wide range of altitudes and flight velocities, in which the density of the mass 

of gaseous products of disintegration ( PTI)~ may become equal to or greater than the 

density of the stream of mass in the oncoming flow (p~)~. However the ratio of densi- 

ties pm I pto and of velocities v, / V, remains considerably smaller than unity. Because 

of this the corresponding ratio of densities of the momentum stream is also much smaller 
than unity, while theReynolds numbers Re = p,v,R / ps* and Re, = p,*v,“R / pLw* 
are considerably greater than unity. We assume that 

The system of Navier-Stokes equations for an N-component chemically reacting 

mixture of gases in the absence of external electromagnetic fields and energy transport, 

and under conditions of quasi-inertness, is of the following dimensionless form (13, 141: 

(pur”), + (pwku-l), =O 

p (auu, + UUy + axuv) + up, = 2 [(/_lrQy + . . . I 
(1.1) 

p (uuv, + 7J7Jy - uxu2) + py = E2 [...I 

p (uuh, + “h,) - hup, - 7Jpy = --I,, + &2 [/.Lz$ + . . .] 
p (auCi, + Uc’iv) - Wi = - Ii, -t_ ’ . . (i= 1, . . . . N) 

i AJi = E”P [(Cim)u + Bi (In Q, + l?i (In QJ (i z 1, . . . , !v) 
j=l 

I, = - E~?LG-~T, + 5 hjIj + i TjIi 
j=l j=l 

a-l = 1 + xy, 
lJ*cp* 

O=7 

where rR and yR are coordinates normally attached to the surface of the body, UV, 
and vv, are velocity components in the direction of these coordinates ; rR is the 
distance of a point in the stream from the axis of symmetry ; pmp, pmvmz p, vm2h, 

( vm2 I cp*) T, cp* cp, h*h and lo * p are, respectively, the density, pressure, enthalpy. 
temperature, specific heat, the coefficients of thermal conductivity and of viscosity of 

the gas mixture ; Ci, mi, v,’ hi and (pcov, / R)wi’ are, respectively, the concentra- 
tion, molecular weight, enthalpy and the rate of formation of the i-th component ; 
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poo%31q and pm ZI,I~ are, respectively, the projections of the thermal and diffusion 
fluxes of the i-th component on the y-axis. Coefficients A,j, Bi, I’i and Ti are func- 

tions of temperature, pressure, concentration, charges, molecular weights of components, 
and binary Schmidt numbers, Bi and Ti depend also on coefficients of thermal diffu- 
sion. (These coefficients are readily obtained from [13, 141). The subscripts x: : tlj and 

* denote dimensional parameters of the oncoming stream, parameters at the surface of 
the body, and characteristic values of parameters, respectively. Dots denote terms of 

equations which will not be subsequently required, subscripts x and y denote differen- 
tiation with respect to these variables, for plane and axisymmetric flows k = 0 and 

k =I, respectively, and & is a characteristic linear dimension. 
Conventional conditions at infinity are specified: voor p,, T, and Ci, (i --_= 1, 

. . ., N). 
Boundary conditions at the surface of the body are of the form 

u = o, pv ==G@), T=T,(x), b+~v[Ci-CCtl)l=-‘pi (i=l,...,N) (1.2) 

where Ci(l) is the concentration of the i -th component of the injected gas and 6: is the 
surface rate of formation of the i-th component. 

2. For high Reynolds numbers He and H e!w this problem contains a small parame- 
ter at the leading derivative. To solve it we use the method of external and internal 

expansions. 

We assume that all specified functions G (z), T, (x), I^, (x), Ci(U (3.) , etc. are 
analytic. In that case it is evidently possible to expand the flow parameters outside the 

mixing region of the oncoming and the injected from the body surface streams, as well 

as outside the shock wave, into series in integral powers of parameter E. 

The principal terms of the expansion represent the basic inviscid stream, the second 
terms define the external flow which depends on the thickness of the displaced layer of 
molecular transport, etc. 

Defining the stream function by formula [ 151 

& = pur’ldy - pvrku-ldx (2.1) 

and passing to new variables x and $, for the principal terms of the external expansion 

we obtain the following equations and boundary conditions : 

puu, + puv, +- px = 0, k w, - axu -t i” P’L = 0 (2.2) 

Ph, = Pw apUCi, = Wi’ (i = 1, ,) !V) 

IV c. 
y+ = (pur’)-l, u = auyx, P = pR,T 2 2 

At the surface of the body 
i=r 1 

Y 

y = 0, u = 0, j” L- T, (ox), 6’ (x) (Ci - c,(l)) z pi’ Ci = 1, . .t N) (2*3) 
Hugoniot formulas apply at the shock wave for IJ = Q8 (Qs = (k + l)-lr:+l) . 
The external expansion does not hold in the stream mixing region (region 3 in Fig. l), 

but its principal terms satisfy the conditions at the contact discontinuity, where pz = 6 
when 9 =O. 
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Let us attach the system of coordinates 2, 
duce variables defined by formulas 

y to the contact discontinuity and intro- 
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y = eye, v = &VO , Ii = &liO, I, = &I,0 (2.4) 

In the region of molecular transport the solution of Eqs. (1.1) expressed in terms ofthese 
new variables can now be expanded in integral powers of E. 

For the principal terms of the internal expansion we obtain boundary layer equations 

whose form is the same as that of equations of system (1. l), if in the latter we omit the 
dots,set r = rc, a = 1, E = 1, and x = 0, and substitute p y = 0 for the second 

equation of momenta. 

The asymptotic joining of external and internal expansions yields boundary conditions 
for the principal terms of the internal equation 

u -+u+ (x), h +h* (z), Ci 4Ci+- (x) (i = 1, ., N) for yn -f 00 (2.5) 

where Z& (z), h* (z) and Ci* (2) are, respectively, the velocities, enthalpies, and 
concentrations of components, which are de- 

termined by the external solution at the sur- 

face of contact discontinuity. 

Equations of the boundary layer with con- 
ditions (2. 5) determine the structure of the 

layer of molecular transport (of the suspen- 

ded boundary layer). The position of that 
layer_ is determined by the condition that 

ZJO = 0 for yo = 0 with an accuracy ofthe 

order of E . 
Equations and boundary conditions for sub- 

sequent terms of the external and internal 

expansions are derived as in [ 161. 

Fig. 1 

3. Let us find the solution of the exter- 
nal problem for small values of parameters 

El = pm I ps* and 6 = p~*~‘iz~~* ,‘om?2U,. 

3.1. First, let us consider the flow in re- 
gion 2 (Fig. 1) between the contact surface 

and the surface of the body. We omit heuristic considerations and introduce new varia- 

bles by formulas 
y =@Y’, u = K’&i, v =(v,“,‘v,) v’, p = K-‘p’ (3.1) 

$ = ( K-lv,” / vm) $‘, h = Kh’, K = pc., / pw* 

We express Eqs. (2.2) in terms of these variables and seek its solution in the form 

cp = (PO + & + - - - (3.2) 

where rp is any of the unknown functions. All of these functions and their derivatives 
are of the order of unity. For the first terms of expansion (3.2) we obtain the following 
expressions : 

WI2 (~7 t> = 2 Ifb @) - ho (T q1, uo (G q = uo (5, q Yox (3.3) 
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where pot is the pressure at the contact surface, plc is the correction for pressnre pot 
which is obtained from the solution of the external problem in layer 1 (Fig. 1) with al- 
lowance for (3,3), Cie is the concentration of the i-th chemical element, Al, is the 
number of chemical elements, and t is the value of the s-coordinate of the point of 

intersection of a streamline and the surface of the body. 
In the case of a chemically frozen flow we have 

ci(X,t)=C&)(t) ~(iz=f,...,iV), r=cp/G?r v=(y-I)11 (3*5) 

PO (2, t) Poe (x) 
l/Y, (0 

To (5, t) 

p,,(t)= [ 1 Po,. 
) ho h, t) 

-:=?;uo=; 
hw (I) i 

PO? (qvwit) 
Pot VII 

(3. s> 

To simplify integration the specific heats of individual components were assumed inde- 

pendent of temperature. 
In the case of flow with balanced chemical reactions the entropy S (a~, t) == S, (1). 

Assuming that h, p, T and Ci (i= 1, , . ., N) are known functions of entropy, pres- 

sure, and concentration of elements, we obtain the complete solution of the problem. 
It can be readily ascertained that in the case of chemically balanced or frozen flow 

the systems of equations for subsequent terms of expansion (3.2)) may also be integrated 

in quadratures. Note that in the general case the s~sequent terms of that expansion de- 
pend on parameter 6, and also on parameter &i. 

3.2. Let us now consider the flow of gas in region 1 (Fig. 1) between the shock wave 
and the contact surface. If the form of the contact surface is assumed known, the solu- 
tion of Eqs. (2.2) in layer 1 can be sought in the form of related series expansions in the 
small parameter E, [IS, 17 - 191. In this case the flow in layer 1 consists of two sub- 

layers in which the solution is represented by different expansions in ei. In the sublayer 
1’ adjacent to the shock wave the tangent velocity component u or its derivative a, is 
of the order of unity, and in the first approximation the flow in that sublayer is defined 

by Eqs. (2.2) in which terms with lengthwise pressure gradient are absent and the trans- 
verse pressure gradient is balanced by centrifugal forces [ 153. It should be noted that 
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the solution obtained in [ 15] is valid in region 1’ near the shock wave not only in the 
neighborhood of the stagnation point of a blunted body, but also at some distance from 
the latter. 

In the sublayer 1” which adjoins the contact surface the flow,is defined in the first 

approximation by equations of an inviscid boundary layer with allowance for the length- 

wise pressure gradient [ 193. 
The asymptotic solution for the whole region 2 may be obtained either by joining the 

solutions for separate subregions [ 193 or by constructing and solving asymptotic equations 
uniformly suitable t~oughout region 1 [ 17, 183, 

The validity of this approach to the solution of the problem of hypersonic inviscid 

flow around blunted bodies with impenetrable surface is confirmed by the results of nu- 

merical computations [ZO - 221. Similar reasoning was used in [ZO, 23, 241 for inves- 
tigating the flow of a hypersonic stream of viscous gas around bodies. 

Since the thickness of layer 1 in the case of axisymmetric flow is of the order of 

0 (Q) or of 0 ( aI 111 6,) in that of plane flow [ 171, while the thickness of the layer 
of injected gases 2 is of the order of 0 (6) [l, 121, hence for the shock wave we have 

rIs (JJ) = 7, (z) H + 0 (6) -+ 0 (E& or 0 (El in q)l 

Consequently in the first approximation we obtain rs, o (x) = rc,@ (T) = r, (z}. 

To find solutions of higher approximations throughout the shock layer it is convenient 

to use the method of successive approximati~s, taking into accout the two-layer struc- 
ture in region 1 and the presence of the layer 2 of injected gases, Appli~tion of that 
method yields for the parameters of flow in the shock layer the following expressions: 

x 
L s 2 +I n-1 
-TddJ: (n>l) 

1 
4, n-l 
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where n is the number of approximation (II =- I, 2,. . .) ; m z 1 for layer 1 and 

m = 2 for layer 2 ; ysn (z) and ys,n (2) are the distances from the body to the con- 
tact discontinuity and to tne shock wave, respectively ; a and B are the angles between 

the direction of the stream at infinity and the tangents to the contour of the body and to 
the shock wave, respectively, and t is the IC -coordinate of the point of intersection bet- 

ween a streamline and the shock wave (when solving the problem in layer 1) or the sur- 
face of the body (when solving the problem in layer 2). 
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Fig. 2 

In the case of flow with frozen chemical reactions in the shock layer and balanced 

reactions at the surface of the body and at the shock wave we have 

Cim, n (Ic, t) = Cim, n (t, t) (i --= 1, .) N) 
(P1,n(t,t)~cp,,,(t), (~~,,&t)=p,,,(t), cp-p,~,h,T,Ci(i-=l,....-Y) 
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In the case of flow with balanced chemical reactions s,,, (CC, t) = S,,, (t, t) and 

s,,, (5, 0 = sul, n (Q v and the enthalpy, density, and concentrations of components 

depend on P~,~, S,,, , and the concentrations of elements. 
3.3. To estimate the limits of applicability of the asymptotic solution of the external 

problem we compare it with the numerical solutions presented in [3, 41. Let us consider 

the flow of a homogeneous air stream around a sphere with injection of gas distributed 

according to the law U, (0) = U, (0) cos”e. We consider the surface temperature T, 
to be specified and constant and y = 1.4. Pressure distribution along the contact sur- 

face, which is unknown before the solution of the problem, will be specified, as in [4], 

by the Newton formula p = p. sin’ a,, where a, is the angle between the tangent to 

the contact surface and the axis of symmetry. In this case the solution of the problem 

in the layer of injected gases is separated from the solution in layer 1. 

Fig. 4 

Fig. 5 

The thickness of the injected gas layer 
calculated by formulas (3.3) and (3.5) for 

the case of injection with n = 1 is shown in 
Fig. 2 for several values of parameter 62. 

The form of the contact surface is shown in 
Fig. 3 for b2 = 0.017 and several values 

of index n. In these figures the dash lines 

relate to the numerical solution in [4]. The 

comparison of the analytic solution in the 

first approximation (3.3) and (3.5) with the 
numerical one in [4] shows a satisfactory 

agreement for n = 0; 1. For instance, for 

Fig. 6 

n = 1 the relative discrepancy between the thicknesses is less than 10 % even for 6 = 
O. 1’77. For fixed 6” = 0.017 this difference increases with increasing n but does not 
exceed 17% for n = 3.6. 

The dependence of the thickness of the injected gas layer on 6 for x == 0 is shown 
in Fig. 4, where curve 1 relates to first approximation calculation, curve 2 to that ofthe 

first two approximations, and curve 3 is taken from [4]. The similar dependence of the 
thickness of the injected gas layer on index n is shown in Fig. 5 for x = 0 and h2 = 
0,017 (curve 1 relates to the first approximation, curve 2 to two approximations, and 
curve 3 is taken from [4]). Note that the thickness of layer 2 for x: I 0 is independent 
of injection velocity distribution over the surface of the body. Its dependence on this 
distribution is revealed in the second approximation (3.4) and (3.6). 

The comparison of thickness of injected gas layers calculated by formulas (3.3) and 
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(3.5) and computed numerically in [3] (the dash line) is shown in Fig. 6 for the flow 
around a spherical blunting for the following parameters: 

(p& /(pvm& = 0.5, r = 1.4, pc = 0.71 (pu2,,,),*cos20 

4. The internal problem of multicomponent gas flow in region 3 (Fig. 1) of stream 
mixing was solved on a computer for a mixture of the following chemical components: 

0, N, O,, N,, Hz, CO, CN, HCN, C, and C,. Reactions in the suspended boundary layer 
were assumed frozen, and thermal diffusion was neglected. The system of equations for 
the boundary layer with boundary conditions (2.5) were expressed in terms of the Dorod- 
nitsyn-Lees variables (g, q) [lo]. It was solved by the implicit four-point two-layer 

Some of the calculation results are presen- 
tionaccuracy 0 (A?) + 0 (Aq4). 

ted m [ 121, and are shown here by dash lines 

in Fig. 7 for the flow in the neighborhood of 

the stagnation line of an axisymmetric body. 
0 IO zo ‘7 The laminar mixing of homogeneous streams 

1.0 in the presence of a pressure gradient was also 
considered in 1261. 

difference scheme [25] with the approxima- 

015 
6, Investigations of intensive injection 

in the theory of the boundary layer [9, 121 
show that with increasing injection parameter 
(II = (k .I- 1)” (3/8)“4 ~11’4 (pw* i P,~*)~‘~ 6 Re’ 2 

0 IO 20 30 the coefficient of friction, the thermal and 

Fig. 7 diffusion fluxes at the surface of the body de- 

crease and for Q 3 3 - 5 the effect of terrns 
which define the molecular transport in equations of the boundary layer on the flow pat- 

tern in the immediate vicinity of the body surface becomes negligibly small [lo]. This 

means that for Q = 3 - 3 the molecular transport region in the boundary layer begins 
to move away from the surface of the body, and the flow at the surface is defined by 
equations of the inviscid boundary layer. The comparison of solutions of inviscid and 

complete equations of the boundary layer shows a good correlation in a layer of thickness 
of order 0 (6) close to the surface of the body. A similar flow pattern is obtained by the 

analysis of the simplified Navier-Stokes equations [ 11, A comparison of the numerical 
solution of the simplified Navier-Stokes equation obtained in [ 11 with the asymptotic 

solution (dash lines) is shown in Fig. 7 . 
The author thanks G. A. Tirskii and G. G, Chemyi for valuable discussion of this prob- 

lem, 
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STABILITY AND BIFURCATION OF CQUBTTE FLOW IN THE CASE OF 

A NARROW GAP BETWEEN ROTATING CYLINDERS 

PMM Vol. 38, Np 6, 1974, pp.l025-1030 
S. N. OVCHINNIKOVA and V.I. IUDOVICH 

(Rostov-on-Don) 

(Received March 18, 1974) 

Stability and bifurcation of Couette flow between concentric rotating cylinders 
are investigated for the case when the ratios of their radii K and angular velo- 

cities Q are nearly equal to unity. The limiting problem in the linear theory 
when R ----f 1 and !I + 1 is the problem of convection stability in the layer [I]. 

We find that this is also correct in the case of a nonlinear problem. Below we 
show that solution of the problem of free convection yields the principal term of 

the expansion of the secondary flow (Taylor vortex) in the powers of a small pa- 

rameter 6 = R - 1. Therefore the results of [2. 31 can be used to provide, in 
the present case, a strict justification for the use of the Liapunov-Schmidt me- 
thod to compute the Taylor vortices. The numerical results obtained for the cri- 
tical Reynolds’ number and the amplitude of the secondary flow provide a good 
illustration of the asymptotic passage as 6 --) 0. 

1. Statement of the problem, Let a viscous incompressible fluid of unit 

density fill the space between two infinite concentric cylinders of radii R, and R,, ro- 

tating at the angular velocities Q2, and a2,. Let R -+ 1 and h2 -+ 1 , SO that 

(a - 1) / (R - 1) = c = const, R = R, i RI, 62 = 62, / al 

We choose R, - RI as the characteristic length snd 62, (R, - RI) as the charac- 


